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Transmission resonance in an infinite strip of phason 
defects of a Penrose approximant network 

K Moulopoulos and S Roche 
Labomtoire #Etudes des Propttri&& Electronique des Solides, CNRS, 38042 Grenoble, France 

Received 23 May 1995 

Abstract. An exact method that malyticdly provides transfer matttrices in finite networks of 
quasicrystalline approximants of any dimensionality is discussed. We use these matrices in two 
ways: (a) to exactly determine the band stmcture of an infinite approximant network in analytical 
form; (b) to determine, also analytically, the quantum resistance of a finite strip of a network 
under appropriate boundary conditions. As a result of a subtle interplay between topology and 
phase interferences, we find that a strip of phason defeas along a special symmetry direction 
of a low 2D Penrose approximanf leads to the rigomus vanishing of the reflection coefficient 
for certain energies A similar behaviour appears in a low 3D approximant. This type of 
'resonance' is discussed in connection with the gap structure of the corresponding ordered 
(undefected) system. 

1. Introduction 

Recent experimental work [I] shows that quasicrystals and quasicrystalline approximants 
have curious (for metallic materials) transport properties. Anomalously high values of the 
low-temperature resistivity, and the resistivity decrease with the introduction of defects or 
with an increase of temperature, are typical examples. We have recently analysed [2]  the 
role of a particular type of phason defect on the conductance of a Fibonacci chain. From 
a consideration of the scattering problem of non-interacting electrons through the chain we 
have demonstrated subtle interference effects between the hyperspace construction and the 
phase coherence of the wavefunctions in real space. A full continuous formulation (as 
opposed to usual discretized approximations of a tight-binding form) was critical [Z] for 
obtaining these interferences. i.e. the full phase coherence had to be kept without truncation 
approximations. Motivated by that work, here we follow a similar continuous scattering 
formalism, but in model systems of higher dimensionality. ' 

Within a continuous approach, a way to study structural aspects in higher dimensionality 
exactly, is to treat nehvorks of wires [3 ]  that form a particular ZD or 3D structure. The 
electrons can propagate only along the wires, but their wavefunctions split at every vertex 
by respecting continuity and quantum-mechanical current conservation at every vertex. (This 
splitting is the analogue of scattering in the full high-dimension problem.) These are good 
(exactly soluble) model systems that can show non-trivial interference effects on the phase 
of the exact wavefunctions, and that can also demonstrate how these are affected by the 
particular topology (manifested by the connectivities characterizing 'the selected structure). 

Our goal here is to study 'such structural effects on phase interferences, but also to 
see how these are influenced by the introduction of defects in the structure, in the form of 
disruption of long-range order. We find a type of resonance upon introduction of a particular 
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kind of defect, which is the result of a subtle interplay between phase interferences and the 
topology introduced by the defect. 

The structures used can be periodic, but with noh-trivial unit cells. Periodicity combined 
with the scattering formalism leads to a natural study of quasicrystalline approximants. We 
should emphasize that consideration of such a scattering (or equivalently, transmission) 
problem, givesfill information on the states and the spectrum. The band structure of these 
approximants can be given exactly in closed form (with the coupling of modes in different 
'directions kept in.full without approximations). These are therefore good textbook examples 
of derivations of band structures in high dimensionality, by simply starting from a scattering 
problem through a single unit cell. 

The defects introduced are of a phason-type (but different from the ones studied in [2 ] )  
and in real space they correspond toflips of the internal structure of the unit cell. Our goal 
is to study the influence of such a flip on the transmission properties. We actually find, as 
already mentioned, at least one system where the flipping causes a rigorous vanishing of 
backscattering (reflection coefficient) for some incidence energies. Introduction of an infinite 
strip of such flippings leads to a 'resonance', while introduction of a finite number of them 
lowers the resistance of an otherwise ordered strip. Although these results are rigorous for 
a strip of unit cells under some special type of boundary conditions, comparison with the 
same method applied to a square lattice gives evidence that this vanishing may be related to 
the creation of some extended states in the infinite lattice upon introduction of flipping. This 
observation may be seen as a manifestation of anomalous transmission behaviour, consistent 
with numerical works 141 on 2D Penrose lattices (in a tight-binding approximation), and 
also in general agreement with experiments [I] in real approximants. We also find that 
the special energies where the resonance occurs lie in the middle of gaps of the infinite 
(undefected) approximant. We propose this as evidence that a possible creation of extended 
states may be due to the creation of levels (upon flipping) in gaps of the ordered system. 

2. The method 

K Moulopoulos and S Roche 

We solve the full continuous and static Schrodinger equation in each branch (wire) of 
the network. No truncation approximations are made, so that the full phase coherence of 
the wavefunctions is maintained. For simplicity, we use a vanishing potential along each 
wire (free electrons along each branch) and take the length of each branch as a common 
length ( I )  (however we can still form various non-trivial structures by connecting the wires 
appropriately, see for example figure 3). For more complicated treatments (i.e. for effects 
of disorder by introducing random potentials along the wires, etc) the above assumptions 
can of course be relaxed. 

We then match the solutions from all wires that join at a point (vertex): continuity of 
the wavefunction and quantum-mechanical current conservation at each vertex are enforced 
[3]. The method is formally similar to discussions [5] of the linearized Ginzburg-Landau 
equation in superconducting networks. 

We give for example the matching equations for the simplest single-vertex arrangements 
shown in figure 1. 

For case (a) of three wires we have 

Aleik' + &eAik' = A; + Bi = Ao + BO 
from the continuity of the wavefunctions, and 

Aleik' - = A; - + A o  - Bo 
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A, B; A; B; Figure 1. (a) The simplest single-venex arrangement, 
Bo ++ + +~ with branch 1 being viewed as the input, 1' as the 

output. and 0 as the ' m s v e m '  branch. (b)  The single ~t 

as one way to assure quantum-mechanical current conservation. In the above, A and B are 
the coefficients of the two linearly independent plane waves (with wavevector k )  along each 
wire. 

A 2 x 2 transfer matrix can be defined that describes the scattering of electrons incident 
at branch 1 and transmitted at branch l', while branch 0 is viewed as the 'transverse' escape 
of electrons. If,' for example, we look at a situation where electrons are not incident from 
outside through branch 0 (which is equivalent to setting BO = 0), but they can only escape 
through this branch (i.e. A0 # 0), then elimination of A0 from equations (1) and (2) leads 

i 

to 

which defines the 2 x 2 transfer matrix for this simplest possible case (the determinant of 
this matrix is 1, as expected, from the conservation of probability). 

It is important to emphasize that the topology of the selected structure (manifested by 
the corresponding connectivity of the wires) is crucial for the form of the resulting matrices. 
To show this, let us also determine the 2 x 2 transfer matrix associated with case (b), with 
two transverse channels, of figure 1. For this case, the matching equations are 

from current conservation. Once again, if we treat branch 1 as the input branch, 1' as the 
output branch, and 0 and 0' as free transverse escapes (i.e. we impose BO = EA = 0, i.e. no 
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additional input of electrons from the transverse directions, but only output that is naturally 
determined from the Schrodinger equation), then elimination of Ao and Ab from equations 

K Moulopoulos and S Roche 

(4) and (5) leads to 

($) = (ep, ;::q (;;). 
Note that the 2 x 2 transfer matrix for this case is different from (3). the sole reason being 
the fact that there is one additional transverse channel compared to case (a). (However the 
determinant of (6) is also 1, as expected.) 

We conclude from these hivial (single-vertex) cases, that the topology (connectivity) 
is very important for the form of the transfer matrices (and hence of any transmission 
properties, as, for example, the resistance (see below)). The selected topology actually 
leads to non-trivial forms for the transfer matrices and the transmission properties, as will 
be discussed below. 

It is important to note that even for a complex problem (of many wires and many 
vertices forming a particular structure, as will be shown below, see figure 3) it is always 
legitimate to choose one wire as the input channel and any other wire as the output one, 
with all the rest as ‘outside’ wires (i.e. lying to the exterior of the chosen unit), treated as 
transverse escape-channels, irrespective of their number. (In the interior of the selected unit, 
everything (even closed loops) is accounted for in an exact manner through the splitting 
of the wavefunction everywhere (in a0 vertices). Therefore, the topology of the particular 
structure chosen affects very sensitively the resulting transmission properties, see below.) 
By then choosing boundary conditions of some type for the coefficients in these external 
transverse wires, we can always obtain a 2 x 2 transfer matrix, as above, but, in general, 
with elements that can be quite complicated functions of kl, the form of which depends 
on the topology of the selected structure (of both internal and~external connectivities) and 
describes the complete phase coherence throughout the selected unit. This will be done in 
the following sections. 

Let us first, however, use the concept of the transfer matrix, as introduced above, to 
discuss transmission properties. Usually, for a complex system with many channels, one 
speaks in terms of the multi-channel Landauer formula [6] in order to define a measure of 
the resistance. Here, however, we find it more convenient to focus on the channels that 
we choose as input and output branches, and to define an effective resistance, even in the 
presence of the transverse escapes. By making a small modification (see the Appendix) to 
the standard Landauer argument [7] we find that this effective resistance is given, for spin-; 
electrons. bv 

7th (R - T +  1) 
e* 2(1 - R) 

R=- (7) 

with R and T the (partial) reflection and transmission,coefficients resulting from the 2 x 2 
transfer matrix (as discussed above) of the problem under consideration. It turns out that 
these coefficients aregiven by the elements of the transfer matrix (f) as follows 

and 
(9) 

Note that (7) yields the usual Landauer ratio R/T if there are no transverse escapes or 
if periodicity is enforced in *e transverse channels (or generally whenever R + T = 1 is 
valid). 
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The boundary conditions (for the transverse wires) that we use in what foIlows are 
of two types: one might be called ‘free scattering’ and correspond to vanishing transverse 
incidence (as the ones used in the above trivial singlevertex cases), and the other is periodic 
boundary conditions in the transverse directions. The latter can lead to band smctures, as 
will be seen below. But a link between the two types is expected, as we now discuss in the 
case of the simplest 2D structure: a square network. 

3. Example: a square lattice 

3.1. The transmission problem 

The basic vertex problem to be solved is shown in figure l(d). Matching the solution in all 
N vertices results in transfer matrices, with forms depending on the boundary conditions. 

(i) For ‘free scattering’, namely CO = DN = 0 (no current input transversely, as 
discussed in the previous section) we obtain the following 2N x 2N transfer matrix (for 

with i~ denoting the N x N identity matrix. and with d being an N x N submatrix of the 
form 

0 0 0 . . .  
0 0 ... 

0 -  
e-ikf 1 , -e-ikf 

0 
0 0 0 - e-ikf 1 -e-ikf 

1 -  0 ... 1 1 .  0 (11) 

0 0 0 0 -  e-ikl 0 
Hence the total transfer matrix of a finite piece of a square network of ‘width’ N and 
“en,& M will be a product of M matrices of the form (IO). This matrix summarizes the 
full information of multiple splittings and can give all the transmission properties of this 
network under this type of boundary conditions. (We will see below, however, that a simple 
choice of width N = 2 and length M = 2 (equivalent to a single unit cell) is sufficient to 
exhibit resonance phenomena related to properties of the infinite square network.) 

(ii) For periodic boundary conditions along the transverse’direction. namely CN = 
CO eiNd and DN = Do eiNd we obtain the corresponding 2N x 2N result (again for ‘N > 2) 

1 (1 + e-Zikf ) iN - e-ikf$ 

- k - ” k l i N  

with $ again being an N x N submatrix, but now of the form 

/ 0 1 0 ... e-’+\ 

. I  I . . . .~ 

1 0 1 ... 0 
0 1 0  ... 1 $= 

and once again the total transfer matrix of a finite piece of a square network ( N  x M) will 
be a product of M mabices of the form (12). 
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We make the following important observation for case (i): if we take just a double vertex 
(N = 2), the transfer matrix associated with the unit cell of the square network (hence M = 2 
as well) is just the square of matrix (10). This matrix has off-diagonal elements proportional 
to cotkl, which are therefore vanishing for kl = (2p + 1 ) ( ~ / 2 ) .  These ‘resonances’ that are 
observed for the single unit cell under ‘free scattering’ boundary conditions, correspond, as 
we will show below, to a special property of the bands of the infinite square network and 
they are related to states that are ‘maximally extended’ (see the next subsection). Hence the 
finite (even small, with just a single unit cell) transmission problem, for this type of boundary 
conditions, carries the memory of the most extended states (in the thermodynamic limit) in 
the form of the vanishing of appropriate partial reflection coefficients. This motivates the 
treatment of a single unit cell of a somewhat more complex network in section 4. 

3.2. Band structure 

Let us actually find the exact band structure of an (infinite) square network this results from 
relating coefficients periodically in both orthogonal directions. By identifying, for example, 
the coefficients in the single-vertex system ( N  = M = 1) (see figure l(c)) in the following 
way 

Af - A ih B’ - B ih I - le I - le 

and 

AI - A  ih p - B ih 

all eight coefficients appearing in this problem can be eliminated, with a resulting relation 
between k l  and @I and 42. This relation is the exact band structure (since k is related to the 
energy E by k2 = 2mE/h2), and the two phases define the crystal momenta (41 and 42) in 
the two orthogonal directions through $1 = qll and 42 = 421. The resulting band structure 
is 

,, - oe - oe 

2m 
-El2  = [arccos(; cosqll + ~ c o ~ q z l ) ] ~ .  
h2 

Plotting (14) for qll as a function of E (for several fixed values of qd),  we see gaps 
opening at regions where qll becomes a complex number (figure 2). (We also observe a 
manifestation of the Higgs mechanism (i.e. the opening of a gap at E = 0) that is further 
discussed in the next section.) It is interesting that, by smoothly changing 421 we see that the 
band structure is actually moving. This is an additional feature (of coupling between the two 
modes) in comparison to standard tight-binding band structures. Note, however, that during 
this movement, there are some special points in k-space given by kl = (2p + l)(n/2) that 
always lie in bands (and they are the only points that have this property), see figure 2. This 
shows that these points label what could be called ‘maximally extended‘ states. Recall that 
these are the points that give ‘resonances’ (vanishing of the partial reflection coefficients) 
in the ‘free-scattering’ transfer matrices of a single unit cell. This motivates our later 
proposition that a resonance that we will find in a non-trivial network, under introduction of 
a defect, may also be related to the possible creation of extended states. (Spectral properties 
of a more general rectangular lattice have been discussed recently [8], with emphasis on 
incommensurability issues with respect to the ratio of the two lattice constants.) 
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Figure 2. Movement of the band svucture of a square network as qzl is varied. The solid curve 
corresponds to q ~ l =  0, the dashed-dotted curve to q21 = n/2 ,  and the dotted cume to qzl= n. 
The two vertical lines show the positions of two special energies mnesponding to kl = "12 and 
kl  = 3 ~ 1 2 .  Note that these points nlwnp belong to a band. (Units (2m/fr2)I2 = 1 are used.) 

4. A low 2D Penrose approximant 

4.1. Transmission problem 

The simplest way of filling the plane periodically with the standard two Penrose rhombic 
tiles is shown in figure 3(a)  (where the two linearly independent directions are also shown, 
labelled by the two phases 41 and 4 2  that will later enter into the band structure). This 
structure can be viewed as a low 2D Penrose approximant. 

Figure 3. (a) A low 2D approximull network. There are three directions along which the unit 
cell is repeated, two of them are independent and ace symbolized hy the phases 01 and & 
(the third is them described by the phase 41 - 42). A single unit cell is shown in the centre, 
with m w s  in the 'outside bmche;' (which are determined by filling the plane with periodic 
repetition of this unit cell in all thre: directions). Single mows signify 'free scattering' boundary 
conditions (see the text at the beginning oi section 4). I and 1' denote the input and output 
branches (where reflections are allowed). (b)  The result of flipping the interior of the central 
unit cell, but keeping the extemal environment the same. 
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Let us determine the transfer matrix for the scattering of electrons through a single unit 
cell of such an ordered system, by treating branch 1 as the input branch, and 1' as the 
output one (see figure 3(u)). All other 'outside' branches shown in figure 3(u) are treated 
as transverse escapes. Let us therefore apply 'free scattering' boundary conditions for these 
escape wires (that are ten in number). It turns out that we now have 30 matching equations 
overall (describing the complete physics at the seven vertices). The total number of branches 
is 21 (which means 42 coefficients overall), and since from the boundary conditions ten of 
them vanish, we can solve this linear system of equations for (42 - 10) - 30 = 2 quantities 
(i.e. A; and Bi) ,  a procedure which indeed yields a 2 x 2 transfer matrix (linearly relating 
Ai,  BI with A I ,  B,)  as claimed earlier. The above procedure is actually equivalent to 
inverting a 30 x 30 matrix, in order to obtain the final 2 x 2 transfer matrix for this problem. 
This 30 x 30 matrix carries the full memory of the structure of the unit cell (through the 
particular connectivities), both the intemal structure, and also the external connectivities as 
well (recall from the earlier discussion in section 2 that this was crucial for the form of the 
resulting matrix). 

'The transfer matrix that results fr6m this procedure gives, through equations (8) and 
(g), the following exact results for the reflection and transmission coefficients 

131913+39744cos2klf8343cos4k/ R = -  
9 5897 +~ 6336 cos 2kI + 561 cos 4kI 

and 
(16) 

128 13 + 12cos2kl T=- 
9 5891 + 6336cos 261 + 561 cos4kl' 

Note that R has a maximum for k/ = (2p+ 1)@/2). This is actually related to the fact that 
for the infinite approximant, these points correspond to the middle of gaps, as will be seen 
below (subsection 4.2). Indeed for an infinite strip of such (ordered) units parallel to the 11' 
direction (i.e. in such a way as to have the output of one as the input ,of another), the total 
transfer matrix is an infinite product of elementary transfer matrices, and the corresponding 
(12)-element will diverge; a reflection coefficient that goes to infinity indeed signifies the 
presence of a gap. 

What is, however, more interesting is the problem of a unit with a 'flipped' internal 
'structure (while keeping the external connectivities the same, \a simulate the fact that the 
flipping is in the interior of only one unit cell and not in the external environment). This 
'flipped' system is shown in figure 3(b). By going through the new matching equations and 
inverting the new 30 x 30 matrix we obtain the following exact results 

I(cos k1)' 12781 T 8 2 9 9 ~ 0 ~ 2 t /  - 1 8 0 ~ 0 ~ 4 k l -  9 0 0 ~ 0 ~ 6 k l  
R =  (17) 9 6821 T 6 2 8 1 ~ ~ ~ 2 k l  T 2 5 5 ~ ~ ~ I k / - 4 6 0 ~ ~ ~ 6 k / -  lOOcos8kl 

and 
128 11 + 8 cos 2kI 

T = -  (18) 

From the structure of (17) we see that for the special points kl = (2p + 1 ) ( ~ / 2 )  
(where the ordered system was found to have a maximum) the reflection coefficient vanishes 
rigorqusly. This vanishing is a very special situation that does not happen in the ordered 
system. It shows that if we put any finite number of flipped units inan otherwise ordered 
strip, the resistance will go down. Even more spectacular is the fact that even an infinite strip 
of flipped units along this special symmetry direction will have a vanishing total reflection 
coefficient (due to the vanishing of the (12)-element of each transfer matrix, any product of 
these matrices, even an infinite number of them, will have a (12)-element that will also be 
rigorously vanishing). The reflection coefficients (15) and (17) are plotted in figure 4. 

9 6821 + 6284cos2klf 255 cos4kl- 460 cask[ - 100 cos 8kl' 

, 
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R 

Figure 4. The reflccuon cwfficienrs. equ~lionj (151 and (17). for lhe units shown in figures 3(u) 
and (bl .  Unir 3(a) shous 3 local maximum. and unit 3(b) shows a mnirhing 3~ h* special point 
k I = ?  2 

4.2. Band structure 

Let us now determine the band structure of the ordered infinite approximant network. We 
relate coefficients, through a phase $1 or r& or 41 - &, for comesponding branches of 
unit cells that repeat in the three possible directions. 'An example is shown in figure 5, 
showing connections through phases q+1 and &. The final result comes, after elimination of 
all coefficients, from a 12 x 12 determinant, and is 

I @2t A 

. .  

Figure 5. An example of how to ,relace coefficients 
through 61 and h, in order to determine analytically the 
band Structure of m infinite netwo* with the unit cell of 
figure 3(0 ) .  I figure 3(0 ) .  

This exact and analytically given band structure is plotted in figure 6 (for fixed 42). We 
see again the gap structure opening at regions where $1 becomes a complex quantity. Once 
again we observe gaps in the origin, which is a manifestation of the Higgs mechanism: this 
is expected for any network because even in the long-wavelength limit the space is full of 
'holes' and never homogeneous, resulting in the disappearance of Goldstone~modes and the 
opening of a gap at the origin. 

A contour plot E @ I ,  42) of (19) (surfaces of constant energy) is also given in figure 7. 
This shows the possible 'Fermi surfaces', if 'the incidence energy is identified, as usually 
done, with the Fermi energy'@or free particles in full 2D space we would of course have 
homocentric circles.) 
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I , , ,  , 
0 5 10 15 25 30 20 . E 

Figure 6. The band structure of an infinite nehvork With the unit cell of figure 3(a)  (for 
h = ~ 1 2 ) .  Gaps open at rezions where $1 becomes a complex number. 

Figure 7. The possible Fermi surfaces associated with the network 
figUE 3(Q). 

with the unit cell Of 

Note from the band structure (19), that the resonance upon flipping found above 
is always in the middle of gaps of the ordered system. If the resonance is indeed a 
demonstration of the extendedness of states (as it is in the case of a square network discussed 
earlier), one interpretation would be that new levels may be created in some gaps of the 
ordered system upon introduction of the phason defect. This is in agreement with numerical 
findings, for a 2D Penrose system [4] in a tight-binding model. 

We finally report that a calculation for a much bigger unit (that consists of a central 
unit cell together with all six neighbouring unit cells, see figure 8) gives the result plotted 
in figure 8. We note that a very deep minimum close to zero is also observed in the case 
when we only flip the central unit cell, whereas a very pronounced maximum appears in 
the ordered (unflipped) system. 
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Figure 8. The reflection coefficients (c) for a bigger central unit (a). consisting of seven unit 
cells (one central and the six neighbouring ones). For the ordered (unflipped) system (a)  we 
observe a local maximum; for the system with a flipped cenual unit cell (b). we observe a deep 
minimum very close IO zero (Rmin = 0.017). at kl = a/2. 

5. A 3D Penrose approximant network 

We now search for the above resonance phenomena in a more complex three-dimensional 
Penrose network, with a unit cell consisting of four rhombohedra of two types, as shown in 
figure 9(a). It turns out that the problem is richer 191 than the corresponding 2D network, 
but in one c a e  we indeed observe the same type of resonance upon flipping of the internal 
rhombohedra (see figure 9(b)), but again keeping the external connectivities the same. This 
result is shown in figure 9(c), where the reflection coefficients of the ordered and the flipped 
system are compared. 

6. Conclusion 

We have found a vanishing reflection coefficient for a strip of flipped units in a 2D and 
also in a 3D network of wires for special incidence energies. The first obvious question 
is whether this type of resonance is experimentally detectable. With recent advances 
in microfabrication techniques extremely narrow wires can actually be manufactured. 
(Experiments in quasiperiodic superconducting networks [IO] have already been performed.) 
Alternatively, one can try the analogous acoustic experiments 1111 to observe the above 
phenomena. What is required for these types of resonances to be observed, is reflectionless 
reservoirs in the transverse channels, so that the ‘free scattering’ boundary conditions are 
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satisfied. 
From a theoretical point of view and in relation to quasicrystalline approximants, we 

have argued that the above resonances may be related to the possible creation of extended 
states, upon flipping, in the gaps of the ordered system. If this is true, it may be seen as a 
possible mechanism of lowering the resistance with the introduction of defects, a tendency 
that is in general agreement with real experiments [l] on approximants and with numerical 
treatments [4]. 

K Moulopoulos and S Roche 
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1 

I -  
_ .  , ., 

, ,  

" 
1.5 1.52 ' 1.54 1.56' 1.58' 1.6 1.62 1.64 

kl-L , .  

(C) 
Figure 9. (a )  The 'unit cell of a low 3D approximant. (b)  The corresponding unit with 
'flipped' internal smcture (but the same external environment). (c) The corresponding reflection 
coefficients showing a vanishing for [he flipped system at the same special point kl = r/2. 

We should also emphasize that the above results are rigorously valid for a low-periodic 
approximant. Whether they persist in cases of more complex unit cells, and ultimately in 
the limiting case of a quasicrystal (an infinite size unit cell) is not known and deserves 
further investigation. 

Finally, from an academic point of view, the above model systems are rare (if not unique) 
examples of exactly soluble band structures in high dimensionality. Furthermore, using these 
exact band structures as 'input' one can go further in building a semiclassical dynamics 
[ 121 to study time-dependent propagation in these networks. Effects of disorder can also 
be studied through the introduction of random potentials as already mentioned. Finally, 
the introduction of a magnetic field is possible (and the problem is still soluble). This can 
address questions related to the quantum Hall effect [13] in quasicrystalline approximants, 
a subject that is still open to investigation. 



Phason defects of a Penrose approximnnr network 8895 

Acknowledgment 

One of us (KM) acknowledges support from the European Union through the Human,Capital 
and Mobility Program. 

Appendix 

We here derive equation (7) for the-effective resistance of a system in the case where 
electrons can also escape or be incident in transverse directions. Consider figure l(c). 
Imagine that the system under consideration is located at the position of the vertex. Then 
view wire 1 as the input and wire 1’ as the output wire. Channels 0 and 0‘ are to be raken 
as the transverse channels (see text). We now modify the standard Landauer argument 171 
to this more general case. 

Suppose that we apply a potential difference 6V between 1 and 1’. This creates a dehsity 
change 

This change can also be written as 

in terms of the plane wave coefficients shown in figure l(c). 
The input current in channel 1 is 

while the output current in channel 1’ is 

2; =eu(IA’ , l2-IB~l2)  

where it is assumed that the Fermi velocity U = a E / a k  is fhe same in both sides. Here 
we will not assume the usual 1D conservation of current 11 = I:, because of the presence 
of channels 0 and 0’. Let us call the ‘effective resistance’ the ratio 

o v  R =  -. 
11 

Using (ZO), (21) and (22) we obtain 

and 

The total reflection and transmission coefficients for this system are given by 

From (26) aid (27) it turns out that 

(24) 



The notation manifests the fact that this quantity is related to the current change. Indeed, 
conservation of the total number of electrons (including the ones incident or escaping 
through the transverse channels) gives 

I A ~ ~ 2 - l ~ ~ 1 2 + I A o 1 2 - l ~ o l Z =  IA;I'- IB~l2+IA~l2-1$1' (3  1) 

which in turn, through the use of (22) and (23) leads to 

1 
eu 

SI = -(I'  I - h ) .  

Finally, in a standard transmission problem we set BI = 0, so that IA;I2 = TlAl I' and 

(33) 

jBIIZ = R I A I ~ ~ .  This leads to 

6 2  = (T + R - 1) IAiI'. 

Substituting (28), (29) and (33) into (U), and with 

for a 1D system and for spin-i electrons, we obtain equation (7). The standard Landauer 
result RIT follows in the special case SI = 0, which is equivalent to R + T = 1. 

References 

[l] For a review, see C Berger in 1994 Lectures On Quosicrysrals ed F Hippert and D Gratis (Paris: Les 

[2] Moulopoulos K and Roche S Phys. Rev. B to be published 
[3] Exner 0 P and Seba P 1989 Rep. Moth Phys. 27 7 

Avron J E and Sadun L 1989 Phys. Rev. Lett. 62 3082 
Avishai Y and Luck I M 1992 Phys. Rev. B 45 1074 

Editions de Physique Les Ulis) 

[4] Fujiwam T. Yamamto S and Trambly de Laissardiere G 1993 Phys. Rev. Lett. 71 4166 
[SI de Gennes P G 1981 C. R. Acad Sci. B 292 279 

[6] Langreth D C and Abraham E 1981 Phys. Rev. B 24 2978 
[7] Landauer R 1970 Phil, Mog. 21 863 
[SI Exner P 1995 Phys. Rev. Lett. 74 3503 
191 Moulopoulos K unpublished 

Alexander S 1983 Phys. Rev. B 27 1541 

~ 

[IO] h n e t i e r  E ern1 1984 Phys. Rev. Left. 53, 1845 
Behrooz A et 01 1986 Phys. Rev. Lett. 57 368 
M e r  M A era1 1993 Phvs. Rev. B 47 14165 

[Ill Hc S and Maynard J D is89 Phys Rev Leu. 62 1888 
[I21 Ashcroft N W and M e m m  N D 1976 Sdrd Smrc Phpres (New York. Philadelphm Holt-Snunden) ch 12 
[I31 See Kohmoto M 1993 3. Phys. Soc. Japan 62 4001 


